SYNTHESIS, CRYSTAL STRUCTURE, SPECTROSCOPIC AND DENSITY FUNCTIONAL MODELLING STUDIES OF THE 2-ISOPROPYLBENZIMIDAZOLIUM TETRACHLOROPLATINATE(II) MONOHYDRATE

Celal Tuğrul Zeyrek, Hüseyin Ünver, Mahmut Gozelle, Nefise Dilek, Fatma Gümüş
1.289 270

Abstract


Synthesis, crystallographic characterization, spectroscopic and density functional modelling studies of the 2-isopropylbenzimidazolium tetrachloroplatinate monohydrate (C10H13N2)2.[PtCl4].H2O have been reported. The molecular structure of the compound was determined by single-crystal X-ray diffraction analysis. In the compound, the Pt atoms reside at a center of inversion. The compound is comprised of 2-isopropylbenzimidazole (Hipb)+: (C10H13N2)+ and [PtCl4]2- ions, respectively, linked by intermolecular hydrogen bonds NCl [3.249(4) from 3.660(7) Å], CCl [range from 3.553(7) to 3.895(7) Å] and O atom of anon-coordinating water molecule in the crystal structure NO [2.728(8) Å], OCl [range from 3.234(6) to 3.451(7) Å], CO [range from 3.350(7) to 3.545(1) Å] for the investigated compound. The molecular structure obtained from X-ray single-crystal analysis of the investigated compound in the ground state has been compared using Hartree-Fock (HF) and density functional theory (DFT) with the functionals B3LYP and PBE1PBE using the LANL2DZ basis set. The experimental (spectroscopic) and calculated vibrational frequencies (using DFT) of the title compound have been compared. There exists a good correlation between experimental and theoretical data for the complex. 

Keywords


Crystal structure, platinate salts, benzimidazole, density functional theory, hydrogen bond.

Full Text:

PDF

References


Denny, W.A., Rewcastle, G.W. and Baguley, B.C., “Potential antitumor agents; structure-activity-relationships for 2-phenylbenzimidazole-4-carboxamides, a new class of minimal DNA-intercalating agents which may not act via topoisomerase-II”, J. Med. Chem., 33(2): 814-819, (1990).

Gravatt, G.L., Baguley, B.C., Wilson, W.R. and Denny, W.A., “Na-directed alkylating-agents; synthesis and antitumor-activity of DNA minor groove-targeted aniline mustard analogs of pibenzimol (Hoechst-33258)”, J. Med. Chem., 37(25): 4338-4345, (1994).

Kim, J.S., Gatto, B., Yu, C., Liu, A., Liu, L.F. and LaVoie, E.J., “Substituted 2,5'-bi-1H-benzimidazoles: Topoisomerase I inhibition and cytotoxicity”, J. Med. Chem., 39(4):992-998, (1996)

Horton, D.A., Bourne, G.T. and Smythe, M.L., “The combinatorial synthesis of bicyclic privileged structures or privileged substructures”, Chem. Rev., 103(3): 893-930, (2003).

Bradshaw, T.D., Wrigley, S., Shi, D.F., Schultz, R.J., Paull, K.D. and Stevens, M.F.G., “2-(4-aminophenyl)benzothiazoles: novel agents with selective profiles of in vitro anti-tumour activity”, Brit. J. Cancer., 77(5): 745-752, (1998).

Payne, J.E., Bonnefous, C., Symons, K.T., Nquyen, P.M., Sablad, M., Rozenkrants, N., Zhang, Y., Wang, L., Wang, L., Yazdani, N., Shiau, A.K., Noble, S.A., Rix, P., Rao, T.S., Hassiq, C.A. and Smith, N.D., “Discovery of dual inducible/neuronal nitric oxide synthase (iNOS/nNOS) inhibitor development candidate 4-(2-cyclobutyl-1H-imidazo[4,5-b]pyrazin-1-yl)methyl)-7,8-difluoroquinolin-2(1H)-one (KD7332) Part 2: Identification of a novel, potent, and selective series of benzimidazole-quinolinone iNOS/nNOS dimerization inhibitors that are orally active in pain models”, J. Med. Chem., 53(21): 7739-7755, (2010).

Roth, T., Morningstar, M.L., Boyer, P.L., Hughes, S.H., Buckheit, R.W. and Michejda, C.J., “Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-aryl-substituted benzimidazoles”, J. Med. Chem., 40(26): 4199-4207, (1997).

Galal, S.A., Hegab, K.H., Kassab, A.S., Rodriguez, M. L., Kerwin, S.M., El-Khamry, A.A. and El Diwani, H.I., “New transition metal ion complexes with benzimidazole-5-carboxylic acid hydrazides with antitumor activity”, Eur. J. Med. Chem., 44(4): 1500-1508, (2009).

Wang, X.L., Hou, L.L., Zhang, J.W., Gong, C.H. and Liu, G.C., “Bis(benzimidazole)-based ligands-directed the various dimensionality of metal-organic complexes based on carboxylates co-ligands: Syntheses, structures and properties”, Inorg. Chim. Acta., 405: 58-64, (2013).

Abdel-Ghani, N.T., E-Ghar, M.F.A. and Mansour, A.M., “Novel Ni(II) and Zn(II) complexes coordinated by 2-arylaminomethyl-1H-benzimidazole: Molecular structures, spectral, DFT studies and evaluation of biological activity”, Spectrochim Acta A, 104: 134-142, (2013).

Arjmand, F., Parveen, S., Afzal, M. and Shahid, M., “Synthesis, characterization, biological studies (DNA binding, cleavage, antibacterial and topoisomerase I) and molecular docking of copper(II) benzimidazole complexes”, J. Photoch. Photobio. B, 114: 15-26, (2012).

Nicolini, M. (ed.), “Platinum and other metal coordination compounds in cancer chemotherapy: clinical application of platinum complexes”, Martinus Nijhoff Publishing, Boston, (1988).

Krause-Heuer, A.M., Grunert, R., Kuhne, S., Buczkowska, M., Wheate, N.J., Le Pevelen, D.D., Boag, L.R., Fisher, D.M., Kasparkova, J., Malina, J., Bednarski, P.J., Brabec, V. and Aldrich-Wright, J.R., “Studies of the mechanism of action of platinum(II) complexes with potent cytotoxicity in human cancer cells”, J. Med. Chem., 52(17): 5474-5484, (2009).

Johnstone, T.C., Wilson, J.J. and Lippard, S.J. “Monofunctional and higher-valent platinum anticancer agents”, Inorg. Chem., 52(21): 12234-12249, (2013).

Fraval, H.N.A. and Roberts, J.J., “Excision repair of cis-diamminedichloroplatinum(II)-induced damage to DNA of Chinese-Hamster cells”, Cancer Res., 39(5): 1793-1797, (1979).

Pinto, A.L. and Lippard, S.J., “Sequence-dependent termination of invitro DNA-synthesis by cis-diamminedichloroplatinum(II) and trans-diamminedichloroplatinum(II)”, P. Natl. Acad. Sci. USA, 82(14): 4616-4619, (1985).

Jamieson, E.R. and Lippard, S.J., “Structure, recognition, and processing of cisplatin-DNA adducts”, Chem. Rev., 99(9): 2467-2498, (1999).

Cleare, M.J., Hydes, P.C., Malerbi, B.W. and Watkins, D.M., “Anti-tumour platinum complexes - relationships between chemical properties and activity”, Biochimie, 60(9): 835-850, (1978).

Bloemink, M.J., Engelking, H., Karentzopoulos, S., Krebs, B. and Reedijk, J., “Synthesis, crystal structure, antitumor activity, and DNA-binding properties of the new active platinum compound (bis(N-methylimidazol-2-yl)carbinol)dichloroplatinum(II), lacking a NH moiety, and of the inactive analog dichloro(N-1, N-1'-dimethyl-2,2'-biimidazole)platinum(II)”, Inorg. Chem., 35(3): 619-627, (1996).

Domnina, E.S., Voropaev, V.N., Skvortsova, G.G., Minakova, S.M. and Chernov, V.A., “Synthesis and anti-tumoral activity of complex-compounds Pt(II), Pt(IV) and Pd(II) with 1-vinylazoles”, Khim. Farm. Zh+, 17(6): 700-703, (1983).

Gumus, F. and Algul, O., “DNA binding studies with cis-dichlorobis (5(6)-non/chlorosubstituted-2-hydroxymethyl-benzimidazole) platinum(II) complexes”, J. Inorg. Biochem., 68(1): 71-74, (1997).

Muir, M.M., Cox, O., Rivera, L.A., Cadiz, M.E. and Medina, E., “Synthesis and characterization of new platinum(II) complexes containing thiazole and imidazole donors dichlorobis(styrylbenzazole)platinum(II) complexes”, Inorg. Chim. Acta., 191(1):131-139, (1992).

Mylonas, S., Valavanidis, A., Dimitropoulos, K., Polissiou, M., Tsiftsoglou, A.S. and Vizirianakis, I.S., “Synthesis, molecular-structure determination, and antitumor-activity of platinum(II) and palladium(II) complexes of 2-substituted benzimidazole”, J. Inorg. Biochem., 34(4): 265-275, (1988).

Gumus, F., Algul, O., Eren, G., Eroğlu, H., Diril, N., Gür, S. and Ozkul, A., “Synthesis, cytotoxic activity on MCF-7 cell line and mutagenic activity of platinum(II) complexes with 2-substituted benzimidazole ligands”, Eur. J. Med. Chem., 38(5):473-480, (2003).

Gumus, F., Demirci, A.B., Ozden, T., Eroglu, H. and Diril, N. “Synthesis, characterization and mutagenicity of new cis-[Pt(2-substituted-benzimidazole)(2)Cl-2] complexes”, Pharmazie, 58(5): 303-307, (2003).

Gumus, F., Eren, G., Acik, L., Çelebi, A., Öztürk, F., Yılmaz, Ş., Ilıkçı Sağkan, R., Gür, S., Özkul, A., Elmalı, A.and Elerman, Y., “Synthesis, cytotoxicity, and DNA interactions of new cisplatin analogues containing substituted benzimidazole ligands”, J. Med. Chem., 52(5): 1345-1357, (2009).

Gumus, F., Pamuk, I., Ozden, T., Yıldız, S., Diril, N., Öksüzoğlu, E., Gür, S. and Özkul, A., “Synthesis, characterization and in vitro cytotoxic, mutagenic and antimicrobial activity of platinum(II) complexes with substituted benzimidazole ligands”, J. Inorg. Biochem., 94(3): 255-262, (2003).

Utku, S., Gumus, F., Tezcan, S., Serin, M.S. and Ozkul, A., “Synthesis, characterization, cytotoxicity, and DNA binding of some new platinum(II) and platinum(IV) complexes with benzimidazole ligands”, J. Enzym. Inhib. Med. Chem., 25(4): 502-508, (2010).

Elmali, A., Elerman, Y., Eren, G., Gumus, F. and Svoboda, I. “The crystal structures of 2-(3 '-hydroxypropyl)benzimidazolium hexa- and tetrachloroplatinate”, Z. Naturforsch. B, 60(2): 164-168, (2005).

Kukushkin, Y.N., Sedova, G.N., Khamnuev, G.K. and Garnovskii, A.D., “Thermal-Conversions of Platinum(Ii) Halide-Complexes with Imidazoles in Solid-Phase”, Zh. Neorg. Khim., 26(3): 696-701, (1981).

Kukushkin, Y.N., Vrublevskaya, L.V., Vlasova, R.A., Isachkina, T.S., Postnikova, E.S. and Sheleshkova, N.K., “Thermal solid-phase transformation of onium-type platinum(II) and palladium(II) rhodanide complexes”, Zh Neorg Khim., 30(2): 401-406, (1985).

Chari, M.A., Shobha, D., Sasaki, T., “Room temperature synthesis of benzimidazole derivatives using reusable cobalt hydroxide (II) and cobalt oxide (II) as efficient solid catalysts”, Tetrahedron Lett., 52(43): 5575-5580, (2011).

Bruker, APEX2, SAINT and SADABS. Bruker AXS, Inc. Madison, Wisconsin, USA, (2012).

Sheldrick GM, SHELXS–97, “Program for the solution of crystal structures”, Univ. of Goettingen, Germany, (1997).

Sheldrick GM, SHELXL–97, “Program for the refinement of crystal structures”, Univ. of Goettingen, Germany, (1997).

Farrugia, L.J., “ORTEP-3 for Windows - a version of ORTEP-III with a Graphical User Interface (GUI)”, J. Appl. Crystallogr. 30, 565, (1997).

Dennington, R., Keith, T. and Millam, J.I., GaussView, Version 5. Semichem, Inc., Shawnee Mission, KS, (2009).

Frisch, M. J., Trucks, G. W., Schlegel, H. B., et al. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford CT, (2009).

Becke, A.D., “Density-functional thermochemistry; A new dynamical correlation functional and implications for exact-exchange mixing”, J. Chem. Phys., 104(3): 1040-1046, (1996).

Binning, R.C., Curtiss, L.A., “Compact contracted basis-sets for 3rd-row atoms - Ga-Kr”, J. Comput. Chem., 11(10): 1206-1216, (1990).

Dunning, Jr. T.H., Hay, P. J., “Modern Theoretical Chemistry”, Vol. 3, Plenum, New York, (1977).

Perdew, J.P., Burke, K., Ernzerhof, M., “Generalized gradient approximation made simple”, Phys. Rev. Lett., 77(18): 3865-3868, (1996).

Perdew, J.P., Burke, K., Ernzerhof, M., “Generalized gradient approximation made simple (vol 77, pg 3865, 1996)”, Phys. Rev. Lett., 78(7): 1396-1396, (1997).

Perdew, J.P., Kurth, S., Zupan, A., Blaha, P., “Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation”, Phys. Rev. Lett., 82(12): 2544-2547, (1999).

Perdew, J.P., Kurth, S., Zupan, A., Blaha, P., “Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation (vol. 82, Pg. 2544, 1999)”, Phys. Rev. Lett., 82(25): 5179-5179, (1999).

Mulliken, R.S., “Electronic population analysis on Lcao-Mo molecular wave functions”, J. Chem. Phys., 23(10): 1833-1840, (1955).

Perdew, J.P., Chevary, J.A., Vosko, S.H., Jackson, K.A., Pederson, M.R., Singh, D.J. and Fiolhais, C., “Atoms, molecules, solids, and surfaces - applications of the generalized gradient approximation for exchange and correlation (Vol 46, Pg 6671, 1992)”, Phys. Rev. B, 48(7): 4978-4978, (1993).

Merrick, J.P., Moran, D. and Radom, L., “An evaluation of harmonic vibrational frequency scale factors”, J. Phys. Chem. A, 111(45): 11683-11700, (2007).

Ohba, S. and Saito, Y., “Electron-density distribution in crystals of potassium hexachloroplatinate(IV), K2[PtCl6]”, Acta. Crystallogr. C, 40(Oct): 1639-1641, (1984).

Rau, F., Klement, U. and Range, K.J., “Crystal-structure of oxonium hexachloroplatinate(IV), (H3O)(2)PtCl6”, Z. Kristallogr., 210(9): 684-684, (1995).

Valle, G. and Ettorre, R., “Bis(2-chloro-1H-imidazol-3-ium)hexachloroplatinate(IV), (C3H4ClN2)(2)[PtCl6]”, Acta. Crystallogr. C, 54: 448-449, (1998).

Zeyrek, C.T., Dilek, N., Yildiz, M. and Unver, H., “Synthesis, structure, spectroscopic (FT-IR) and density functional modelling studies of 1-[(4-ethoxyphenylimino)methyl]napthalene-2-ol”, Mol. Phys., 112(19): 2557-2574, (2014).

Zeyrek, C.T., Unver, H., Arpaci, O.T., Polat, K., Iskeleli, N.O. and Yildiz, M., “Experimental and theoretical characterization of the 2-(4-bromobenzyl)-5-ethylsulphonyl-1,3-benzoxazole”, J. Mol. Struct., 1081: 22-37, (2015).

Smith, B.C., “Infrared spectral interpretation, a systematic approach”, CRC Press, New York, (1999).

Socrates, G., “Infrared characteristic group frequencies”, John Wiley and Sons, New York, (1981).

Roeges, N.P.G., “A guide to the complete interpretation of IR spectra of organic compounds”, Wiley, New York, (1994).

Teimouri, A., Chermahini, A.N., Taban, K. and Dabbagh, H.A., “Experimental and CIS, TD-DFT, ab initio calculations of visible spectra and the vibrational frequencies of sulfonyl azide-azoic dyes”, Spectrochim. Acta. A, 72(2):369-377, (2009).

Arunagiri, C., Subashini, A., Saranya, M., Muthiah, P.T., Thanigaimani, K. and Razak, I.A., “Synthesis, crystal structure and theoretical studies of a Schiff base 2-[4-hydroxy benzylidene]-amino naphthalene”, Spectrochim. Acta. A, 135: 307-316, (2015).

Govindarajan, M., Periandy, S. and Carthigayen, K., “FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on alpha-bromotoluene”, Spectrochim. Acta. A, 97: 411-422, (2012).

Michalska, D., Bienko, D.C., AbkowiczBienko, A.J., Latajka, Z., “Density functional, Hartree-Fock, and MP2 studies on the vibrational spectrum of phenol”, J. Phys. Chem-Us, 100(45): 17786-17790, (1996).

Ridley, D., “Synthetic and spectroscopic studies on some inorganic and organometallic compounds”, PhD. Thesis, Durham University, (1965).

Abramenko, V.L. and Sergienko, V.S., “Molecular complexes and chelates of dioxomolybdenum(VI) with salicylidene-4-iminobenzenesulfonamides: The crystal structures of salicylidene-4-iminobenzenesulfonamido-5-ethyl-1,3,4-thiadiazole (L-5) and its MoO2L25 complex”, Russ. J. Inorg. Chem., 47(6):806-815, (2002).

Balachandran, V. and Parimala, K., “Tautomeric purine forms of 2-amino-6-chloropurine (N9H10 and N7H10): Structures, vibrational assignments, NBO analysis, hyperpolarizability, HOMO-LUMO study using B3 based density functional calculations”, Spectrochim. Acta A, 96: 340-351, (2012).

Reed, A.E. and Weinstock, R.B., “Weinhold F Natural-Population Analysis”, J. Chem. Phys., 83(2): 735-746, (1985).

Politzer, P., Concha, M.C., Murray, J.S., “Density functional study of dimers of dimethylnitramine”, Int. J. Quantum. Chem., 80(2): 184-192, (2000).

Govindarajan, M., and Karabacak M., “Spectroscopic properties, NLO, HOMO-LUMO and NBO analysis of 2,5-Lutidine”, Spectrochim. Acta A, 96: 421-435, (2012).

Govindarajan, M., Periandy, S. and Carthigayen, K., “FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on alpha-bromotoluene”, Spectrochim. Acta A, 97: 411-422, (2012).