Burcu Şahin, Bekir Çöl, Hatice Güneş
2.362 539


Bacillus thuringiensis (Bt) isolation from the environments of boron mines, the characterization based on cry gene content, boron tolerance, insecticidal crystal protein production and bioactivity of Bt isolates were examined in this study. PCR analysis indicated the presence of Bt strains with cry1 (100%), cry2 (41%) and cry1 plus cry2 (41%) genes. Boron tolerance of Bt isolates grown in different boric acid concentrations changed from 25 to 75 mM. Moreover, boric acid prolonged the lag phase of the growth curve. Furthermore, Bt-KE63-64 isolate at 50 ppm caused 76% mortality against Cadra cautella larvae. Two protein bands at 130 kDa and 65 kDa were detected with SDS-PAGE analysis. Increasing concentration of boric acid resulted in a decrease at the level of Cry protein expression. Finally, addition of 1% boric acid to spore-crystal mixtures of Bt isolate didn’t cause any additive effect on the bioactivity. In conclusion, it is the first time that Bt with high bioactivity was isolated from the environments of boron mines and boric acid tolerance of some of the Bt isolates was up to 75 mM.  


Bacillus thuringiensis, boron tolerance, Crystal protein, boric acid, Cadra cautella

Full Text:



Schnepf, E., Crickmore, N., Van, R.J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., Dean, D.H., ‘Bacillus thuringiensis and its pesticidal crystal proteins’, Microbiol Mol Biol R., 62: 775-806, (1998).

Gonza´lez, J.M., Dulmage, H.T., Carlton, B.C., ‘Correlation between specific plasmids and d-endotoxin production in Bacillus thuringiensis’, Plasmid. 5: 351-365, (1981).

Chambers, J.A., Jelen, A., Gilbert, M.P., Jany, C.S., Gawron-Burke, C., ‘Isolation and Characterization of a Noval Insecticidal Crystal Protein Gene from Bacillus thuringiensis subsp. Aizawai’, J Bacterıol., 173: 3966-3976, (1991).

İçgen, Y., İçgen, B., Özcengiz, G., ‘Regulation of crystal protein biosynthesis by Bacillus thuringiensis. I. Effects of mineral elements and pH’, Res Microbiol., 153: 599-604, (2002).

Özcan, O., İçgen, B., Özcengiz, G., ‘Pretreatment of poultry litter improves Bacillus thuringiensis-based biopesticides production’, Bioresourc Technol., 101: 2401–2404, (2010).

Gibson, D.M., Gallo, L.G., Krasnoff, S.B., Ketchum, R.E., ‘Increased efficacy of Bacillus thuringiensis subsp. kurstaki in combination with tannic acid’, J Econ Entomol Apr., 88: 270-277, (1995).

Bolanos, L., Lukaszewski, K., Bonilla, I., Blevins, D., ‘Why boron?’, Plant Physiol Biochem., 42: 907-912, (2004).

Warrington, K., ‘The effect of boric acid and borax on the broad bean and certain other plants’, Ann Bot (Lond)., 37: 629-672, (1923).

Rowe, R.I., Eckhert, C.D., ‘Boron is required for zebrafish embryogenesis’, J Exp Biol., 202: 1649-1654, (1999).

Fort, D.J., Propst, T.L., Stover, E.L., Strong, P.L., ‘Adverse reproductive and developmental effects in Xenopus from insufficient boron’, Biol Trace Elem Res., 66: 237-259, (1998).

Bennett, A., Rowe, R.I., Soch, N., Eckhert, C.D., ‘Boron stimulates yeast (Saccharomyces cerevisiae) growth’, J Nutr., 129: 2236-2238, (1999).

Goldbach, H.E., Wimmer, M.A., ‘Boron in plants and animals: Is there a role beyond cell-wall structure?’, J Plant Nutr Soil Sci., 170: 39-48, (2007).

Santana, M.A., Moccia, V.C., Gillis, A., ‘Bacillus thuringiensis improved isolation methodology from soil samples’, J Microbiol Methods., 75: 357-358, (2008).

Travers, R.S., Martin, P.A.W., Reichelderfer, C.F., ‘Selective process for efficient isolation of Bacillus spp.’, Appl Environ Microbiol., 53: 1263-1266, (1987).

Ben-Dov, E., Zaritsky, A., Dahan, E., Barak, Z., Sınal, R., Manasherob, R., Khamraev, A., Troitskaya, E., Dubitsky, A., Berezina, N., Margalith, Y., ‘Extended screening by PCR for seven cry-group genes from field collected strains of Bacillus thuringiensis’ , Appl Environ Microbiol., 63: 4883- 4890, (1997).

Ben-Dov, E., Wang, Q., Zaritsky, A., Manasherob, R., Barak, Z., Schneider, B., Khamraev, A., Baizhanov, M., Glupov, V., Margalith, Y., ‘Multiplex PCR Screening To Detect cry9 Genes in Bacillus thuringiensis Strains’, Appl Environ Microbiol., 65: 3714–3716, (1999).

Hansen, B.M., Hendriksen, N.B., ‘Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis’, Appl Environ Microbiol., 67: 185-189, (2001).

Alper, M., Güneş, H., Tatlıpınar, A., Çöl, B., Civelek, H.S., Özkan, C., Poyraz, B., ‘Distribution, occurrence of cry genes, and lepidopteran toxicity of native Bacillus thuringiensis isolated from fig tree environments in Aydın Province’, Turk J Agric For., 38: 898-907, (2014).

Bradford, M.M., ‘A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding’, Anal. Biochem., 72:248-254, (1976).

Laemmli, U.K., ‘Cleavage of structural proteins during the assembly of the head of bacteriophage T4’, Nature., 227: 680-685, (1970).

Magana, C., Hernandez-Crespo, P., Ortego, F., Castanera, P., ‘Resistance to malathion in field populations of Ceratitis capitata’, J Econ Entomol., 100: 1836–1843, (2007).

Bravo, A., Sarabia, S., Lopez, L., Ontiveros, H., Abarca, C., Ortiz, A., Ortiz, M., Lina, L., Villalobos, F.J., Pen˜a, G., Nun˜ez-Valdez, M., Soberon, M., Quintero, R., ‘Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection’, Appl Environ Microbiol., 64: 4965-4972, (1998).

Abbott, W.S., ‘A method of computing the effectiveness of an insecticide’, J Econ Entomol., 18: 265-267, (1925).

Akgüç, N., ‘Isolation and characterization of highly boron tolerant bacteria from Eskişehir-Kırka boron mine and surrounding regions and investigation of genes related to boron tolerance’, PhD thesis, Muğla Sıtkı Koçman University, Graduate School of Natural and Applied Sciences, Muğla, (2013).

Wang, J., Boets, A., Van Rie, J., Ren, G., ‘Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China’ J Invertebr Pathol., 82: 63-71, (2003).

Çınar, C., Apaydin, Ö., Yenidünya, A.F., Harsa, S., Güneş, H., ‘Isolation and characterization of Bacillus thuringiensis strains from olive-related habitats in Turkey’, J Appl Microbiol., 104: 515-525, (2008).

Thammasittirong, A., Attathom, T., ‘PCR-based method for the detection of Cry genes in local isolates of Bacillus thuringiensis from Thailand’, J Invertebr Pathol., 98: 121-126, (2008).

Ahmed, I., Fujiwara, T., ‘Mechanism of boron tolerance in soil bacteria’, Can J Microbiol., 56: 22-26, (2010).

Karakaya, R., ‘Determination of boron tolerance and SDS-PAGE profiles of some bacteria species and isolation of bacteria with high boron tolerance from Bursa-Kestelek mineral deposits’, M.Sc. thesis, Muğla Sıtkı Koçman University, Graduate School of Natural and Applied Sciences, Muğla, (2012).

Keren, R., Bingham, F.T., ‘Boron in Water, Soils and Plants: Advances in Soil Society’, Springer-Verlag, New York, pp. 230-276, (1985).

Doane, C.C., Wallis, R.C., ‘Enhancement of the action of Bacillus thuringiensis var. thuringiensis Berliner on Porthetria dispar (Linnaeus) in laboratory tests’, J Insect Pathol., 6: 423-429, (1964).

Govindarajan, R., Jayaraj, S., Narayanan, K., ‘Mortality of the tobacco Caterpillar, Spodoptera litura (F.), when treated with Bacillus thuringiensis combinations with boric acid and insecticides’, Phytoparasitica., 4: 193-196, (1976).

Khan, K.I., ‘Enhancement of virulance of Bacillus thuringiensis and Serratia marcescens by chemicals’, J Res Sci., 17: 35-43, (2006).

Baum, J.A., Malvar, T., ‘Regulation of insecticidal crystal protein production in Bacillus thuringiensis’, Mol Microbiol., 18: 1-12, (1995).