SYNTHESIS AND A SUGGESTION MECHANISM ON BIOLOGICAL EVALUATION OF AMINO ACID-SCHIFF BASE LIGANDS AND CO(II), CU(II) AND NI(II) COMPLEXES

Elif Loğoğlu, Elif Aynacı Koyuncu, Münteha Nur Sonuç Karaboğa, Nursen Sarı
1.222 371

Abstract


This study aimed to investigate of the antimicrobial activities of some amino acid-Schiff bases complexes as theoretical aspects. Co(II), Cu(II) and Ni(II) complexes of N,N'-(1,4-phenylenedimetiliden)bis DL-Alanine and N,N'-(1,4-phenylendimetiliden)bis DL-Glisine were been prepared and characterized. The antibacterial and antifungal activities were measured by Disc diffusion and MIC method against gram-positive bacteria i.e. Psydomamonas aeruginosa ATCC 29212, Bacillus subtilis RSKK 244, Bacillus megaterium(clinical isolate), gram-negative bacteria Micrococcus Luteus NRRLB and as fungus Candida albicans. The antibiogram tests of amino acid-Schiff bases complexes showed better results than some known antibiotics. Especially Cu(II) complexes were more potent bacteridal than all of the substances synthesized. Furthermore a mechanism of reaction was offered in the explanation of these observation. Some of the compounds exhibited activity comparable to Ketoconazole, Ampicillin, Tetracycline, Penicillin, Gentamisin and Chloroamphenicol. 

Keywords


: Schiff base, Amino acid, Metal complexes, Antimicrobial activity, Radical

Full Text:

PDF

References


References

R. Eglof, P. Piotr, B. Bogumil, B. Franz, Curr Org. Chem. 13 (2009) 241-249.

G. Ellis, L. Chang, B. Cogionis, D. Daneman, Clin. Chem. 43 (1997) 2437-2439.

A.R. Fakhari, A.R. Khorrami, H. Naeimi, Talanta 66 (2005) 813-817.

U. Abram, R. Alberto, J Braz Chem Soc 17 (2006) 1486-1500.

M. Gharagozlou, D.M. Boghaei, Spectrochim Acta A 71 (2008) 1617-1622.

R.M. Wang, C.J. Hao, Y.P. Wang, S.B. Li, J Mol Catal A-Chem 147 (1999) 173-178.

W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Y.H Kim, Park Appl Environ Microb 74 (2008) 2171-2178.

A.P. Mishra, M. Soni Metal-Based Drugs 2008 ID 875410 (2008) 1-7.

S.A. Manley, S. Byrns, A.W. Lyon, P. Brown, J. Gailer, J Biol Inorg Chem 14 (2009) 61-74.

S.J. Lippard, J.M. Berg, Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, CA, USA, (1994) p 64-276.

A.A. Abd El-Raady, T. Nakajima, Ozone-Scı Eng 27 (2005) 11-18.

S. Kobayashi, K. Ueda, T. Komano, Agric Biol Chem 54 (1990) 69-76.

D. Nartop, P. Gürkan, N. Sarı, S. Çete,. J Coord Chem 61 (2008) 3516-3524.

N. Sarı, J Macromol Sci A 43 (2006) 1609-1618.

N. Sari, P. Gürkan, S. Arslan, Trans Metal Chem 28 (2003) 468-474.

J.R. Anacona, I. Osorio, Transit Metal Chem 33 (2008) 517-521.

I. Şakiyan, Trans Metal Chem 32 (2007) 131-135.

I. Kaya, A. Bilici, M. Gul, Polym advan technol 19 (2008) 1154-1163.

N. Sarı, P. Gürkan, S. Çete, I. Şakiyan, Russ J Coord Chem 32 (2006) 511-517.

N. Sarı, P. Gürkan, Trans Metal Chem 28 (2003) 687-693.

N.S. Agar, J.R. Mahoney, J.W. Eaton, Biochem-Pharmacol 41 (1991) 985-993.

H. Zhang, C. Andrekopoulos, J. Joseph, J. Crow, B. Kalyanaraman, Free Radical Bio Med 36 (2004) 1355-1365.

S.I. Liochev, I. Fridovich, J Biol Chem 277 (2002) 34674-34678.

Z.H. Zhao, Y. Sakagami, T. Osaka, Can. J. Microbiol 44 (1998) 441-447.

S.P. Denyer, G.S.A.B Stewart, Int Biodeter Biodegr 41 (1998) 261-268.