PREPARATION OF A NEW URIC ACID BIOSENSOR WITH IMMOBILIZATION OF URICASE UPON POLYPYRROLE-PARATOLUENE SULPHONATE FILM

Servet Çete, Gökçen Karpuz, Ahmet Yaşar
1.252 278

Abstract


In this study, a new amperometric biosensor based on immobilized uricase was developed for the determination of uric acid. Polypyrrole-p-toluene sulphonate film was prepared on the surface of a platinum (Pt) electrode by electropolymerization of pyrrole in the presence of p-toluene sulphonate as an anionic dopant. Uricase enzyme were immobilized in polypyrrole-p-toluene sulphonate via the entrapment method. Determination of uric acid was performed by oxidation of enzymically generated H2O2 at 0.3 V. Some factors that affect response current were studied such as temperature, pH and substrate concentration. Operation stability and storage stability of the biosensor was determined. The biosensor retained 76.6% of its initial performance after 30 assays and it lost 58% of its initial performance after 60 days. Effects of interferants on the current response of the biosensor were examined. The performance of the biosensor was measured in serum of healthy individuals.


Keywords


Uric acid, uricase, biosensor, polypyrrole, paratoluensulphonate

Full Text:

PDF

References


Eswara U.S., Dutt H., Mottola A., Anal. Chem., 46:1777, (1974).

Raj C.R., Ohsaka T., J Electroanal. Chem., 540:69, (2003).

Arora K., Tomar M., Gupta V., “Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film”, Biosensors and Bioelectronics, 30:333–336, (2011).

Burtic C.A., Ashwood E.R., Teitz Textbook of Clinical Chemistry second ed.WB Saunders, Philadelphia (1994).

Rawal R., Chawla S., Chauhan N., Dahiya T., Pundir C.S., “Construction of amperometric uric acid biosensor based on uricase immobilized on PBNPs/cMWCNT/PANI/Au composite”, International Journal of Biological Macromolecules, 50:112– 118 (2012).

Zhao Y.S., Liao F.H., “Serum uric acid and hyperuricemia associated disease”, Int. J. Intern. Med., 34:41–47 (2007).

Becker M.A., Jolly M., “Hyperuricemia and associated diseases”, Rheum. Dis. Clin. North Ame., 32:275–293 (2006).

Chauhan N., Pundir C.S., “An amperometric uric acid biosensor based on multiwalled carbon nanotube–gold nanoparticle composite”, Analytical Biochemistry, 413:97–103 (2011).

Bhargava A.K., Lal H., Pundir C.S., J Biochem. Biophys. Methods, 39:125–136 (1999).

Zhang F., Wang X., Ai S., Sun Z., Wan Q., Zhu Z., Xian Y., Jin L., Yamamoto K., Wang J., Golden T., Tuzhi P., Anal. Chem., 59:740–744 (1987).

Greenberg M.L., Hershfield M.S., Anal. Biochem., 176:290–293 (1989).

Yao D., Vlessidis A.G., Evmiridis N.P., Anal. Chim. Acta., 478:23–30 (2003).

Galban J., Andreu Y., Almenara M.J., de Marcos S., Castillo J.R., Talanta, 54:847–854 (2001).

Yao D., Vlessidis A.G., Evmiridis N.P., Anal. Chim. Acta., 467:133–144 (2002).

Byfield M.P., Abuknesha R.A., “Biochemical aspects of biosensors”, Biosens. Bioelectron., 9:373–399 (1994).

Chu H., Wei X., Wu M., Yan J., Tu Y., “An electrochemiluminescent biosensor based on polypyrrole immobilized uricase for ultrasensitive uric acid detection”, Sensors and Actuators B, 163:247– 252 (2012).

Clark L.C., Lyones C., “Electrode systems for continuous monitoring in cardiovascular surgery”, Ann. N.Y. Acad. Sci., 102:29–45 (1962).

Willner I., “Bioelectronics: biomaterials for sensors, fuel cells, and circuitry”, Science, 298:2407–2408 (2002).

Turner A.P.F., “Biochemistry: biosensors-sense and sensitivity”, Science, 90:1315–1317 (2000).

Mu S., “Bioelectrochemical response of the poloaniline galactose oxidase electrode” J. Electroanal. Chem., 370 (1/2):135–139 (1994).

Pan X., Zhou S., Chen C., Kan J., “Preparation and properties of an uricase biosensor based on copolymer of o-aminophenol-aniline”, Sensors and Actuators B, 113:329–334 (2006).

Umana M., Waller J., “Protein-modified electrodes. The glucose oxidase/polypyrrole system”, J. Anal. Chem., 58 (14):2979–2983 (1986).

Muhammet S.M., Çete S., Arslan F., Yaşar A., “Amperometric cholesterol biosensors based on the electropolymerization of pyrrole and aniline in sulphuric acid for the determination of cholesterol in serum”, Artificial Cells, Blood Substitutes and Biotechnology, 37:273–278 (2009).

Yıldırımoğlu F., Arslan F., Çete S., Yaşar A., “Preparation of a polypyrrole-polyvinylsulphonate composite film biosensor for determination of cholesterol based on entrapment of cholesterol oxidase”, Sensors, 9:6435-6445 (2009).

De Taxis du Poet P., Miyamoto S., Murakami T., Kimura J., Karube I., “Direct electron transfer with glucose oxidase immobilized in an electropolymerized poly-N-methylpyrrole film on a gold microelectrode”, Anal. Chim. Acta., 235:255–264 (1990).

Gerarda M., Chaubey A., Malhotra B.D., “Application of conducting polymers to biosensors”, Biosens. Bioelectron., 17:345–359 (2002).

Kan J., Pan X., Chen C., “Polyaniline-uricase biosensor prepared with template process”, Biosensors and Bioelectronics, 19:1635–1640 (2004).

Arora K., Sumana G., Saxena V., Gupta R.K., Gupta S.K., Yakhmi J.V., Pandey M.K., Chand S., Malhotra B.D., “Improved performance of polyaniline-uricase biosensor”, Anal. Chim. Acta., 594:17–23 (2007).

Gade V.K., Shirale D.J., Gaikwad P.D., Savale P.A., Kakde K.P., Kharat H.J., Shirsat M.D., “Immobilization of GOD on Ppy-PVS composite film for determination of glucose: A comparative study of phosphate and acetate buffers”, International Journal of Polymeric Materials, 56:1051–1065 (2007a).

Gade V.K., Shirale D.J., Gaikwad P.D., Kakde K.P., Savale P.A., Kharat H.J., Shirsat M.D., “Synthesis and characterization of Ppy-PVS, PpypTS, and Ppy-DBS composite films”, International Journal of Polymeric Materials, 56:107–114 (2007b).

Gade V.K., Shirale D.J., Gaikwad P.D., Kakde K.P., Savale P.A., Kharat H.J., Pawar B.H., Shirsat M.D., “Synthesis and characterization of Ppy-PVS, P(NMP)-PVS and their co-polymer Ppy-P(NMP)-PVS films by galvanostatic method”, Int. J. Electrochem. Sci., 2:270– 277 (2007c).

Singh M., Kathuroju P.V., Jampana N., “Polypyrrole based amperometric glucose biosensors”, Sensors and Actuators B, 143:430–443 (2009).

Dolmacı N., Çete S., Arslan F., Yaşar A., “An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film”, Artificial Cells, Blood Substitutes and Biotechnology, 40:275–279 (2012).

Çolak Ö., Yaşar A., Çete S., Arslan F., “Glucose biosensor based on the immobilization of glucose oxidase on electrochemically synthesized polypyrrole-poly(vinyl sulphonate) composite film by cross-linking with glutaraldehyde”, Artificial Cells Blood Substitutes and Biotechnology, 40: 354–361 (2012).

Arora K., Prabhakar N., Chand S., Malhotra B.D., “Immobilization of single stranded DNA probe onto polypyrrole-polyvinyl sulfonate for application to DNA hybridization biosensor”, Sensors and Actuators B, 126:655–663 (2007).

Gade V.K., Shirale D.J., Gaikwad P.D., Savale P.A., Kakde K.P., Kharat H.J., Shirsat M.D., “Immobilization of GOD on electrochemically synthesized Ppy – PVS composite film by cross-linking via glutaraldehyde for determination of glucose”, Reactive & Functional Polymers, 66:1420–1426 (2006).

Newman J.D., White S.F., Tothill I.E., Tumer A.P.F., “Catalytic materials, membranes, and fabrication technologies suitable for the construction of amperometric biosensors”, Anal. Chem., 67:4594–4599 (1995).

Tsai E.W., Pajkossy T., Rajeswer K., Reynolds J.R., J. Phys. Chem., 92:3560 (1988).

Rajesh, Takashima W., Kaneto K., “Amperometric tyrosinase based biosensor using an electropolymerized PTS-doped polypyrrole film as an entrapment support”, Reactive & Functional Polymers, 59:163–169 (2004).

Gros P., Durliat H., Comtat M., “Use of polypyrrole film containing Fe(CN)6 3- as pseudo-reference electrode: Application for amperometric biosensors”, Electrochim. Acta., 46:643–650 (2000).

Görgülü M., Çete S., Arslan H., Yaşar A., “Preparing a new biosensor for hypoxanthine determination by immobilization of xanthine oxidase and uricase in polypyrrole-polyvinyl sulphonate film”, Artificial Cells, Nanomedicine and Biotechnology, 41: 327–331 (2013).

Thompson B.C., Moulton S.E., Richardson R.T., Wallace G.G., “Effect of the dopant anion in polypyrrole on nerve growth and release of a neurotrophic protein”, Biomaterials, 32:3822–3831 (2011).

Chaubey A., Gerard M., Singhal M., Singh V.S., Malhotra B.D., “Immobilization of lactate dehydrogenase on electrochemically prepared polypyrrole–polyvinylsulphonate composite films for application to lactate biosensors”, Electrochim. Acta., 46:723–729 (2000).

Çete S., Bal Ö., “Preparation of Pt/polypyrrole – para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor”, Artificial Cells, Nanomedicine and Biotechnology, Doi: 10.3109/21691401.2012.759121 (2013).

Wang X., Hagiwara T., Uchiyama S., “Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor”, Anal. Chim. Acta., 587:41–46 (2007).

Çete S., Yaşar A., Arslan F., “Immobilization of uricase upon polypyrrole-ferrocenium film”, Artificial Cells, Blood Substitutes and Biotechnology, 35:607–620 (2007).

Arslan F., “An amperometric biosensor for uric acid determination prepared from uricase immobilized in polyaniline-polypyrrole film”, Sensors, 8:5492-5500 (2008).

Zhang F., Wang X., Ai S., Sun Z., Wan Q., Zhu Z., Xian Y., Jin L., Yamamoto K., “Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor”, Anal. Chim. Acta., 519:155–160 (2004).

Çete S., Yaşar A., Arslan F., “An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film”, Artificial Cells, Blood Substitutes and Biotechnology, 34:367–380 (2006).