EVALUATING COMBINE WHITE NOISE WITH US AND UK GDP QUARTERLY DATA

Ayodele Abraham Agboluaje, Suzilah bt Ismail, Chee Yin Yip
1.254 177

Abstract


The main objective of this study is to evaluate the Combine White Noise (CWN) model for the confirmation of its effectiveness in addressing the error term challenges. CWN models the leverage effect appropriately with better estimation results of which the Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH) model cannot handled. The determinant of the residual covariance matrix values indicates that CWN estimation is efficient for each country. CWN has a minimum forecast errors which indicates forecast accuracy by estimating the countries data individually. The overall results indicate that CWN estimation provide more efficient and better forecast accuracy than EGARCH estimation. This boosts the economy.


Keywords


Combine white noise; Efficient; Forecast accuracy; Log likelihood.

Full Text:

PDF

References


D. Qin, and C. L. Gilbert, “The error term in the history of time series econometrics”. Econometric theory, vol. 17, pp. 424-450, 2001.

H. White, “A Heteroskcedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity”. Econometrica, vol. 48, no. 4, pp. 817-838, 1980

A. C. Harvey, Time series models 2nd edition. The MIT Press. Cambridge. Massachusetts. Harvester Wheatsheaf Publisher, 1993.

P. Kennedy, A guide to econometrics 6th edition. Blackwell Publishing, 2008.

R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation”. Econometrica: Journal of the Econometric Society, pp. 987-1007, 1982.

T. Bollerslev, “Generalized autoregressive conditional heteroscedasticity”. Journal of econometrics, vol. 31, no. 3, pp. 307-327, 1986

L. Hentschel, “All in the family nesting symmetric and asymmetric GARCH models”. Journal of Financial Economics, vol. 39, no. 1, pp. 71-104, 1995.

R., Engle, “GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of econometrics Perspectives”, pp. 157-168, 2001. http://www.jstor.org/stable/2696523

A. Vivian and M. E. Wohar, “Commodity volatility breaks”. Journal of International Financial Markets, Institutions and Money, vol. 22, no.2, pp.395-422, 2012.

B. T. Ewing, and F. Malik, “Volatility transmission between gold and oil futures under structural breaks”. International Review of Economics & Finance, vol. 25, pp. 113-121, 2013. journal homepage: www.elsevier.com/locate/iref.

Nelson, D. B. “Conditional heteroscedasticity in asset returns: A new approach”. Econometrica: Journal of the Econometric Society, pp. 347-370, 1991.

M. McAleer, “Asymmetry and Leverage in Conditional Volatility Models”. Econometrics, vol. 2, no. 3, pp. 145-150, 2014; doi:10.3390/econometrics2030145. www.mdpi.com/journal/econometrics

M. McAleer, and C. M. Hafner, “A one line derivation of EGARCH”. Econometrics, vol. 2 no. 2, pp. 92-97, 2014; doi:10.3390/econometrics2020092 www.mdpi.com/journal/econometrics

A. A. Agboluaje, S. bt Ismail, and C. Y. Yip, “ Modeling the Error Term by Moving Average and Generalized Autoregressive Conditional Heteroscedasticity Processes”. American Journal of Scientific Research, vol. 12, pp. 896-90, 20151. DOI : 10.3844/ajassp.2015.896.901.

W.W. Charemza, and D. F. Deadman, New directions in econometric practice, 2nd edition. Edward Elger Publishing limited, Cheltenham UK, 1997.

C. F. Christ, “The Cowles Commission's Contributions to Econometrics at Chicago, 1939-1955”. Economic literature, vol. 32, no. 1, pp. 30-59, 1994.

S. Hurtado, “DSGE Models and the Lucas critique”. Economic Modelling 2014; doi:10.1016/j.econmod.2013.12.002

C. A. Sims, Macroeconomics and Reality, Econometrica, vol. 48, no. 1, pp. 1–48, 1980.

M. A. Lazim, Introductory business forecasting. A practical approach 3rd edition. Penerbit Press, University Technology Mara. Printed in Kuala Lumpur, Malaysia, 2013.

Bollerslev, T., 1987. A conditionally heteroskedastic time series model for speculative prices and rates of return. The review of econometrics. and statistics, pp. 542-547, 1987. http://www.jstor.org/stable/1925546

M. A. Watari, A. A. Zaidan, and B. B. Zaidan, “Securing m-Government Transmission Based on Symmetric and Asymmetric Algorithms”: A review. Asian Journal of Scientific Ressearch, vol. 8, pp. 80-94, 2013. DOI:10.3923/ajsr

R. Moorthy, H. K. Sum, and G. Benny, “Power Asymmetry and Nuclear Option in India-Pakistan Security Relations”. Asian Journal of Scientific Research, vol. 8, pp. 80-94, 2015. DOI:10.3923/ajsr

B. Antoine, and P. Lavergne, “Conditional moment models under semi-strong identification”. Journal of Econometrics, 2014

C. F. A. Uchôa, F. Cribari-Neto, and T. A. Menezes, “Testing inference in heteroskedastic fixed effects models”. European Journal of Operational Research, vol. 235, no. 3, pp. 660–670, 2014 Retrieved from journal homepage: www.elsevier.com/locate/ejor

Z. Asatryan, and L. P. Feld, “Revisiting the Link between Growth and Federalism: A Bayesian Model Averaging Approach”. Journal of Comparative Economics. 2014. http://www.researchgate.net/publication/261838681

M. L. Higgins, and A. K. Bera, “A class of nonlinear ARCH models”. International. Econometrics Review, pp. 137-158, 1992.. http://www.jstor.org/stable/2526988

T.-S. Lim, and W.-Y. Loh, “A comparison of tests of equality of variances”. Computational Statistics and Data Analysis, 22, 287-301, 1996.

D. D.Boos,. and C. Brownie, “Comparing variances and other measures of dispersion”. Statistical Science, pp. 571-578, 2004. http://www.jstor.org/stable/4144427

A. Bast, W. Wilcke, F. Graf, P. Lüscher and H. Gärtner, “A simplified and rapid technique to determine an aggregate stability coefficient in coarse grained soils”. Catena, vol. 127, pp. 170-176, 2015. doi:10.1016/j.catena.2014.11.017

S. Ismail, and T. Z. Muda, “Comparing forecasting effectiveness through air travel data”, 2006. http://lintas.uum.edu.my:8080/elmu/index.jsp?modul...

R. Fildes, Y. Wei and S. Ismail, “Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures”. International Journal For Forecasting., vol. 27, pp. 902-922, 2011. DOI: 10.1016/j.ijforecast.2009.06.002