generalizations of the Feng Qi Type Inequality for Pseudo-Integral

Bayaz Daraby, Amir Shafiloo, Asghar Rahimi
2.610 755

Abstract


In this paper, generalizations of the Feng Qi type integral inequalities for pseudo-integrals are proved. There are considered two cases of the real semiring with pseudo-operations: One, when pseudo-operations are defined by monotone and continuous function $g$ (then the pseudo-integrals reduces $g$-integral), and the second with a semiring $([a, b],\max,\odot)$, where the pseudo-multiplication $\odot$ is generated.

Keywords


Sugeno integrals; integral inequality; Feng Qi inequality; Fuzzy integral inequality

Full Text:

PDF

References


bibitem{ham}

H. Agahi, M. A. Yaghoobi, A Feng Qi type inequality for Sugeno integral, Fuzzy Inf. Eng. (2010) 3: 293-304.

bibitem{Ana}

G. Anastassiou, Chebyshev-Gr$overset{..}u$ss type inequalities via Euler type and Fink identities, Mathematics Computing and Modelling 45 (2007) 1189-1200.

bibitem{bou}

L. Bougoffa, On Minkowski and Hardy integral inequalities, Journal of Inequalities in Pure and Applied Mathematics 7(2) (2006) article 60.

bibitem{cab}

J. Caballero, K. Sadarangani, Hermite-Hadamard inequality for fuzzy integrals. Applied Mathematics and Computation

(2009) 2134-2138.

bibitem{che}

T. Y. Chen, H. L. Chang, G. H. Tzeng, Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy, European Journal of Operational Research 137 (2002) 145-161.

bibitem{Dar}

B. Daraby, Generalization of the Stolarsky type

inequality for pseudo-integrals, Fuzzy Sets and Systems 194 (2012) 90-96.

bibitem{dar}

B. Daraby, L. Arabi, Related Fritz Carlson type inequality for Sugeno integrals, Soft Computing 17 (2013) 1745-1750.

bibitem{flo}

A. Flores-Franuli$check{c}$, H. Rom$acute{a}$n-Flores, A Chebyshev type inequality for fuzzy integrals, Applied Mathematics and Computation 190 (2007) 1178-1184.

bibitem{flor}

A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, A convolution type inequality for fuzzy integrals, Applied Mathematics and Computation 195 (2008) 94-99.

bibitem{Flo}

A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, Markov type inequalities

for fuzzy integrals, Applied Mathematics and Computation 207 (2009) 242-247.

bibitem{Flor}

A. Flores-Franuliv{c}, H. Rom$acute{a}$n-Flores, Y. Chalco-Cano, A note on fuzzy integral inequality of Stolarsky type, Applied Mathematics and Computation 196 (2008) 55-59.

bibitem{hon}

D. H. Hong, A sharp Hardy-type inequality of Sugeno integrals, Applied Mathematics and Computation 217 (2010) 437-440.

bibitem{kra}

S. G. Krantz, Jensen's Inequality, $sharp$ 9.1.3 in Handbook of Complex Variables, Boston, MA: Birkh$overset{..}a$user, 119, 1999.

bibitem{luj}

J.-Y. Lu , K.-S. Wu, J.-C. Lin, Fast full search in motion estimation by hierarchical use of Minkowski's

inequality, Pattern Recognition 31 (1998) 945-952.

bibitem{mes1}

R. Mesiar, E. Pap, Idempotent integral as limit of $g-$integrals, Fuzzy Sets and Systems 102 (1999) 385-392.

bibitem{mes}

R. Mesiar, Y. Ouyang, General Chebyshev type inequalities for Sugeno integrals, Fuzzy Sets and Systems 160 (2009) 58-64.

bibitem{Mes}

R. Mesiar, E. Pap, Idempotent integral as limit of $g$-integrals, Fuzzy Sets and Systems 102 (1999) 385-392.

bibitem{min}

H. Minkowski, Geometrie der Zahlen, Teubner, Leipzig, 1910.

bibitem{ozk}

U. M, $overset{..}O$zkan, M. Z. Sarikaya, H. Yildirim, Extensions of certain integral inequalities on time scales, Applied

Mathematics Letters 21 (2008) 993-1000.

bibitem{Pap6}

E. Pap, An integral generated by decomposable measure, Univ. Novom

Sadu Zb. Rad. Prirod. -Mat. Fak. Ser. Mat. 20 (1) (1990)

-144.

bibitem{feng}

F. Qi, Several integral inequalities. J. Inequal. Pure Appl. Math. 1(2) Art 19.

bibitem{wan}

Z. Wang, G. Klir, Fuzzy Measure Theory, Plenum Press, New York, 1992.