Durrmeyer-Type Generalization of Mittag-Leffler Operators

Gurhan Icoz, Bayram Cekim
2.177 603


In this paper, we study Mittag-Leffler operators. We establish moments of these operators and estimate convergence results with the help of classical modulus of continuity. Also we give A-statistical convergence property of the operators D_{n}^{(β)}.


Mittag-Leffler operators, -statistical convergence, Gamma function, Beta function

Full Text:



G. M. Mittag-Leffler, Sur la nouvelle function C. R. Acad. Sci. Paris, 137 (1903). ,

A. Wiman, Uber den fundamentalsatz in der theorie der funktionen ( ), Acta Math., 29 (1905), 191-201.

J. A. Fridy, On statistical convergence, Analysis. 5 (1985), 301-313.

H. Fast, Sur la convergence statisque, Colloq. Math., 2 (1951), 241-244.

A. R. Freedmanand J. J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293-305.

E. Kolk, Matrix summability of statistically convergent sequences, Analysis, 13 (1-2) (1993), 77

H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc., 347 (5) (1995), 1811-1819.

M. A. Özarslan and H. Aktuğlu, approximation of generalized Szász-Mirakjan-Beta operators, Appl. Math. Lett., 24 (11) (2011), 1785- 17 -statistical

H. Steinhaus, Sur la convergence ordinaire et la convergence asymptique, Colloq. Math., 2 (1951), 73

O. Duman and C. Orhan, Rates of -statistical convergence of positive linear operators, Appl. Math. Lett. 18 (12) (2005), 1339-1344.

O. Duman and C. Orhan, Rates of -statistical convergence of operators in the space of locally integrable functions, Appl. Math. Lett. 21 (5) (2008), 431-4 M. A. Özarslan,

Mittag-Leffler operators, Miskolc Math. Notes, 14 (1) (2013),209-217 -statistical convergence of