A Practical and Highly Efficient Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles Using 2-Ethylhexanoic acid as a Reusable Organocatalyst and Reaction Medium

Rahim Hekmatshoar, Mojgan Kargar, Abdoljalil Mostashari, Zahra Hashemi, Fereshteh Goli, Farnoush Mousavizadeh
1.753 677

Abstract


2-Ethylhexanoic acid has been applied as a dual solvent-catalyst for the one-pot, four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles. This naturally occurring and widely produced fatty acid exhibited remarkable catalytic activity and was easily separated by extraction. The reusability of this catalytic media was examined up to four times and no significant drop in catalytic activity was observed. Utilizing ecofriendly, low cost and commercially available reagent, short reaction times (30-90 min), very good to excellent yields (88-93) and straightforward workup procedure are the salient properties offered by this methodology.


Keywords


2-ethylhexanoic acid, 1,2,4,5-tetrasubstituted imidazoles, organocatalyst, multicomponent reaction

Full Text:

PDF

References


Horvath, I. T., Anastas, P.T., “Innovations and green chemistry”, Chem. Rev., 107: 2169-2173, (2007).

Dallinger, D., Kappe, C. O., “Microwave-assisted synthesis in water as solvent”, Chem. Rev., 107: 2563- 2591, (2007)

Constable, D. J. C., Curzons, A. D., Cunningham, V. L., “Metrics to green chemistry: Which are the best?”, Green Chem., 4: 521-527, (2002).

Welton, T., “Room-temperature ionic liquids. Solvents for synthesis and catalysis”, Chem. Rev., 99: 2071-2083, (1999).

Safaei, H. R., Shekouhy, M., Shafiee, V., Davoodi, M., “Glycerol based ionic liquid with a boron core: A new highly efficient and reusable promoting medium for the synthesis of quinazolinones”, J. Mol. Liq., 180: 139-144, (2013).

Lyubimov, S. E., Rastorguev, E. A., Lubentsova, K. I., Korlyukov, A. A., Davankov, V. A., “Rhodium- containing

heterogeneous catalyst for the hydroformylation of olefins in supercritical carbon dioxide”, Tetrahedron Lett., 54: 1116-1119, (2013) polystyrene as

a Gladysz, J. A., Curran, D. P., Horvath, I. T., “Handbook of Fluorous Chemistry”, Wiley-VCH, Weinheim, (2004).

Mallepalli, R., Yeramanchi, L., Bantu, R., Nagarapu, L., “Polyethylene glycol (PEG-400) as an efficient and recyclable reaction medium for the one-pot synthesis of N-substituted azepines under catalyst-free conditions”, Synlett, 2730-2732, (2011).

Yang, J., Li, H., Li, M., Gu, Y., “Multicomponent reactions of β-ketosulfones and formaldehyde in a bio- based binary mixture solvent system composed of meglumine and gluconic acid aqueous solution”, Adv. Synth. Catal., 354: 688-700, (2012).

Verma, S., Jain L. S., Sain, B., “PEG-embedded thiourea dioxide (PEG.TUD) as a novel organocatalyst for the

dihydropyrimidinones”, Tetrahedron Lett., 51: 6897- 6900, (2010). synthesis of

3,4- [11] Huang, Y. B., Yi, W. B., Cai, C., “An efficient, recoverable fluorous organocatalyst for direct reductive amination of aldehydes”, J. Fluorine Chem., 131: 879- 882, (2010).

Miura, T., Imai, K., Ina, M., Tada, N., Imai, N., Itoh, A., “Direct Asymmetric Aldol Reaction with Recyclable Fluorous Organocatalyst”, Org. Lett., 12: 1620-1623, (2010).

Khalafi-Nezhad, A., Shahidzadeh, E. S., Sarikhani, S., Panahi, F., “A new silica-supported organocatalyst based on L-proline: An efficient heterogeneous catalyst for one-pot synthesis of spiroindolones in water”, J. Mol. Catal. A: Chem., 379: 1-8, (2013).

Bonollo, S., Lanari, D., Angelini, T., Pizzo, F., Marrocchi, A., Vaccaro, L., “Rasta resin as support for TBD in base-catalyzed organic processes”, J. Catal., 285: 216-222, (2012).

Giacalone, F., Gruttadauria, M., Agrigento, P., Campisciano, V., Noto, R., “Polystyrene-supported organocatalysts

reactions: A common post-modification approach for catalytic differentiation”, Catal. Commun., 16: 75-80, (2011). and Michael [16]

poly(propyleneimine) dendrimers

asymmetric aldol reactions”, J. Mol. Catal. A: Chem., 241: 166-174, (2005). G.,

“Proline-modified as catalysts

for Powell, A. B., Suzuki, Y., Ueda, M., Bielawski, C. W., Cowley, A. H., “A recyclable, self-supported organocatalyst based on a poly(N-heterocyclic carbene)”, J. Am. Chem. Soc., 133: 5218-5220, (2011).

Riemenschneider, W., “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH, Weinheim, Vol. A5: 235-248, (1986).

Willecke, K., Pardee, A. B., “Fatty acid-requiring mutant of bacillus subtilis defective in branched chain α- keto acid dehydrogenase”, J. Biol. Chem., 246: 5264- 5272, (1971).

Raju, R., Prasad, K., “Synthetic applications of 2- ethylhexanoic acid derived reagents”, Tetrahedron, 68: 1341-1349, (2012).

Kargar, M., Hekmatshoar, R., Mostashari, A., Hashemi, Z., “Efficient and green synthesis of 3,4- dihydropyrimidin-2(1H)-ones/thions using imidazol-1-yl- acetic acid as a novel, reusable and water-soluble organocatalyst”, Catal. Commun., 15: 123-126, (2011).

Hekmatshoar, R., Kargar, M., Hashemi, Z., Goli, F., Mostashari, A., “Novel and efficient organocatalytic biginelli reaction using 2-ethylhexanoic acid”, GU. J. Sci., 25: 617-621, (2012).

Hekmatshoar, R., Jahanbakhshi, H., Mousavizadeh, F.,

imidazoles using lewis and bronsted acid catalysts”, GU. J. S., 25: 29-34, (2012). of

trisubstituted [26] Leister, C., Wang, Y., Zhao, Z., Lindsley, C. V., “Efficient synthesis of imidazoles from aldehydes and 1,2- diketones using microwave irradiation”, Org. Lett., 6: 1453-1456, (2004).

Abrahams, S. L., Hazen, R. J., Batson, A. G., Phillips, A. P., “Trifenagrel: a chemically novel platelet aggregation inhibitor”, J. Pharmacol. Exp. Ther., 249: 359-365, (1989).

Kidwai, M., Mothsra, P., Bansal, V., Somvanshi, R. K., Ethayathulla, A. S., Dey, S., Singh, T. P., “One-pot synthesis of highly substituted imidazoles using molecular iodine: A versatile catalyst”, J. Mol. Catal. A: Chem., 265: 177-182, (2007).

Mekheimer, R. A., Abdelhameed, A. M. A., Mansour, S. A. A., Sadek, K. U., “Solar thermochemical reactions III: A convenient one-pot synthesis of 1,2,4,5- tetrasubstituted imidazoles catalyzed by high surface area SiO2 and induced by solar thermal energy”, Chin. Chem. Lett., 20: 812-814, (2009).

Samai, S., Nandi, G. C., Singh, P., Singh, M. S., “L- Proline: an efficient catalyst for the one-pot synthesis of 2,4,5-trisubstituted

imidazoles”, Tetrahedron, 65: 10155-10161, (2009).

1,2,4,5-tetrasubstituted [31] Teimouri, A., Chermahini, A. N., “An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5- tetrasubstituted imidazoles catalyzed via solid acid nano- catalyst”, J. Mol. Catal. A: Chem., 346: 39-45, (2011).

Sharma, S. D., Hazarika, P., Konwar, D., “An efficient and one-pot synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted

InCl3·3H2O”, Tetrahedron Lett., 49: 2216-2220, (2008). catalyzed

by Kannan, V., Sreekumar, K., “Clay supported titanium catalyst for the solvent free synthesis of tetrasubstituted imidazoles and benzimidazoles”, J. Mol. Catal. A: Chem., 376: 34-39, (2013).

Mirjalili, B. F., Bamoniri, A. H., Zamani, L., “One- pot synthesis of 1,2,4,5-tetrasubstituted imidazoles promoted by nano-TiCl4.SiO2”, Scientica Iranica C, 19: 565-568, (2012).

Sadeghi, B., Mirjalili, B. F., Hashemi, M. M., “BF3·SiO2: an efficient reagent system for the one-pot synthesis

Tetrahedron Lett., 49: 2575-2577, (2008).

imidazoles”, [36] Murthy, S. N., Madhav, B., Nageswar, Y. V. D., “DABCO as a mild and efficient catalytic system for the synthesis of highly substituted imidazoles via multi- component condensation strategy”, Tetrahedron Lett., 51: 5252-5257, (2010).

Wang, X. C., Gong, H. P., Quan, Z. J., Li, L., Ye, H. L., “PEG-400 as an efŞcient reaction medium for the synthesis of 2,4,5-triaryl-1H-imidazoles and 1,2,4,5- tetraaryl-1H-imidazoles”, Chin. Chem. Lett., 20: 44-47, (2009).