Extensions of Baer and Principally Projective Modules

Sait Halicioglu, Burcu UNGOR, Abdullah HARMANCI
1.794 516

Abstract


In this note, we  investigate extensions of Baer and principally projective modules. Let  R be an arbitrary ring with identity and M a right R-module. For an abelian module M, we show that M is Baer (resp. principally projective) if and only if the polynomial extension of M is Baer (resp. principally projective) if and only if the power series extension of M is Baer (resp. principally projective) if and only if the Laurent polynomial extension of M is Baer (resp. principally projective) if and only if  the Laurent power series extension of M is Baer (resp. principally projective).

Key words: Abelian modules, Baer modules, principally projective modules.

 

2010 Mathematics Subject Classification:  13C11, 13C99.

 


Keywords


abelian modules, Baer modules, principally projective modules.

Full Text:

PDF